KATWA COLLEGE

DEPARTMENT OF PHYSICS

INTERNAL ASSESSMENT EXAMINATION -2022

B.Sc. (H), SEMESTER: -I, PAPER: -CC-II (MECHANICS)

F.M: 10

TIME: 1 HOUR

✤ Answer any five from the following questions: - 5 x 2 = 10

- **1.** A car moves in a circular horizontal track of radius a with frequency of revolution ω . Find out its position vector, velocity, and acceleration at any instant of time t.
- **2.** A particle of mass m moves along x axis under the influence of a conservative force field having potential V(x). If the particle is located at positions x_1 and x_2 at respective times t_1 and t_2 , prove that if E is the

total energy, then $t_2 - t_1 = \sqrt{\frac{m}{2}} \int_{x_1}^{x_2} \frac{dx}{\sqrt{E-V(x)}}$.

- **3.** A particle of mass *m* lies in a potential given by $V(x) = ax^2 + b$, where *x* is the displacement from the stable position. Show that the motion of the particle is simple harmonic and find out its frequency of oscillation.
- **4.** A particle of mass m moves in a straight line acted upon by a constant resisting force $\hat{x}F_o$. If it starts with a speed $\hat{x}v_o$, find out how much distance it will travel before coming to rest.
- **5.** A particle is projected upward in a direction inclined 60° to the horizontal. Show that its velocity at its greatest height is half of its initial velocity.(neglect air resistance).
- **6.** A particle of mass 2 unit moves in a force field given by $\vec{F}(t) = 24t^2\hat{x} + (36t 16)\hat{y} 12t\hat{z}$, assuming at t = 0sec the particle is located at $\vec{r_o} = 3\hat{x} \hat{y} + 4\hat{z}$ and has velocity $\vec{v_o} = 6\hat{x} + 15\hat{y} 8\hat{z}$. Find position and velocity of the particle after t = 2 sec.
- 7. A particle is projected vertically upwards and takes t_1 sec to rise to a height of H metre. If it takes t_2 sec more to reach the ground again, then prove that $H = \frac{1}{2}gt_1t_2$.
- **8.** A particle of mass *m* unit moves in the force field given by $\vec{F} = -\frac{a}{r^3}\vec{r}$. Show that the field is conservative and find out the expression of potential.